

<u>2</u>

©Margie Hobbs, 2009

AMATYC The Right Stuf

Critique These SLOs

- Students will apply concepts of exponentials to conduct experiments and make generalizations.
- Students will communicate orally and in . writing their observations of experiments.
- Students will use appropriate mathematics to make predictions before conducting experiments.

AMATYC The Right Stul

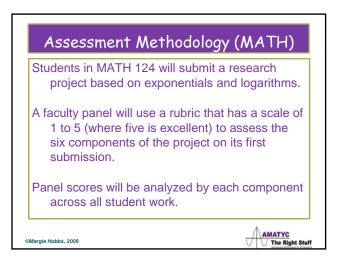
©Margie Hobbs, 2009

Checklist for SLOs **Student Learning Outcomes should:** ✓ Answer the question "What are students" expected to know, think or be able to do?" upon completion of program ✓ Be clearly and succinctly stated ✓ Be under the control or responsibility of the program ✓ Be ascertainable/measurable ✓ Be actionable (lead to improvements)

✓ Lead to results other than "yes/no"

©Margie Hobbs, 2009

AMATYC / The Right Stuff


III. Assessment Methodology

Means of Assessment should:

- Identify at least two assessment methods
- Be directly related to outcome statement
- Be measurable/ascertainable
- Consider all aspects of the outcome statement
- Provide adequate data for analysis
- Provide actionable data

©Margie Hobbs, 2009

AMATYC The Right Stuf

Direct vs. Indirect Assessment Based on analysis of student artifacts, performances, or behaviors Assessment means include tests, assignments, projects,

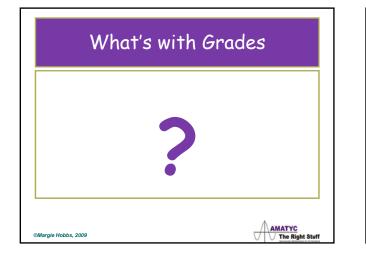
- recitals, performances, portfolios, papers
 Assessment tools include item analyses, rubrics, percentiles
- Based on reported *perceptions* of student learning
- Assessment means include attitudinal data from students, alumni, employers, faculty, fieldwork supervisors
- Assessment tools include surveys, exit interviews, focus
 groups
- Appropriate as secondary means of assessment

©Margie Hobbs, 2009

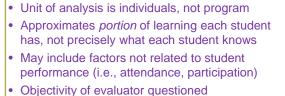
•

AMATYC The Right Stuf

Quantitative vs. Qualitative Assessment

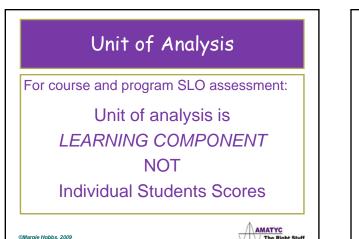

- Test construction is efficient
- May take less time to administer
- Scoring straightforward and efficient
- Analyzing data relatively easy
- Ability to judge "whole" within context
- Flexibility
- Enables student to more comprehensively demonstrate learning

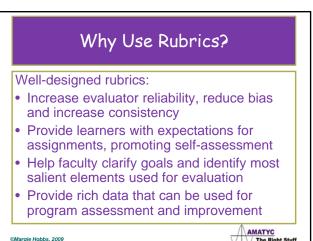
Can lead to discovery of unexpected findings

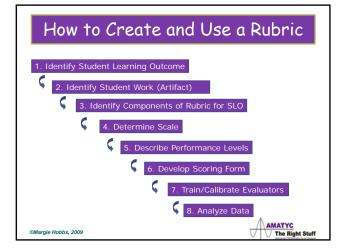

©Margie Hobbs, 2009

AMATYC The Right Stuff

AMATYC The Right St







 Generally, <u>not accepted</u> as a means of program assessment

©Margie Hobbs, 2009

Rubric for Writing					
	Performance Levels				
Component	Excellent (5)	Good (4)	Acceptable (3)	Unsatisfactory (2)	Poor (1)
Audience	Gears style and vocabulary for targeted audience	Somewhat gears style and vocabulary for targeted audience	Fluctuates in style and vocabulary	Often uses in appropriate style and vocabulary for audience	Consistently uses style and vocabulary inappropriate for audience
Organization	Logically developed with excellent transitions	Logically developed with some good transitions	Some inconsistency in logical development and transitions	Frequent inconsistency in logical development and transitions	Illogically developed with poor transitions
Research and Documentation of Courses					
Mechanics					
©Margie Hobbs, 2009					

	ndividu onent					
Component	Individual Student Scores					% Student Scores 4 or above
	Student 1	Student 2	Student 3	Student 4	Student 5	
Audience	4	3	1	4	4	60 %
Organization	5	2	2	5	3	40%
Research and Documentation of Sources	4	3	2	3	2	20%
Mechanics	5	4	3	4	4	80%
Total	18	12	8	16	13	
Student grade	А	с	D	в	с	
EMargie Hobbs, 2009						

	0	Û		
Excellent	Very Good	Satisfactory	Unsatisfactory	Poor
Always	Most often	Usually	Infrequently	Never
Synthesizes	Analyzes	Applies	Understands	Reports
Creative	Interesting	Neutral	Boring	Inaccurate
Very Original	Original	Somewhat original	Not original	Borrowed
Pleasing		Neutral		Unattractive
Complete	Nearly complete	Missing elements	Mostly incomplete	Very incomplete
Always	Usually	Sometimes	Rarely	Never
			_/	AMATYC

AMATYC The Right Stuf

Critique Assessment Methods (MATH)

- A faculty panel will use the Exponentials Project Rubric to evaluate student projects for each of the six learning components. The scale will be 1 to 5 where 5 is excellent. The data will be analyzed by learning component across student work.
- Students' calculator findings will be verified for each of the predicted values. Data will be analyzed across students for each question.

©Margie Hobbs, 2009

AMATYC The Right Stuff

Checklist for Assessment Methodology

- ✓ Describe student work –
- Paper, performance, lab report, comprehensive test, project ✓ Describe evaluation tool(s) –
- Rubric/scale, item analysis report
- Define from whom or where data will be collected Course embedded, senior performance, internship, standardized test
- Describe how data will be collected First attempt, selected questions, elements of portfolio
- Describe data analysis plan Faculty panel, scoring forms, unit of analysis (learning component, not individual student)

©Margie Hobbs, 2009

It is the set of the set

Example of Criteria for Success (MATH)

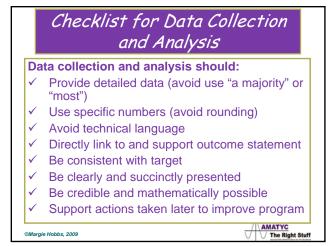
- 80% of scores provided by the faculty panel for each of the six elements of the Exponentials Project Rubric will be 4 (very good) or 5 (excellent).
- 75% of the overall ratings for the projects will be 4 or 5.
- The attached spreadsheet shows the aggregated data.

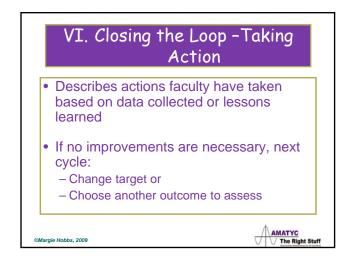
©Margie Hobbs, 2009

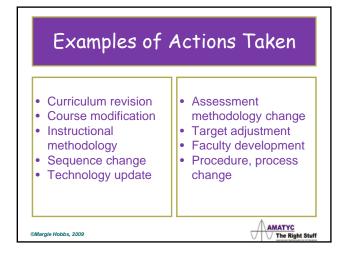
AMATYC The Right Stuff

	Checklist for Target for Success		
W	nen setting target for success:		
✓	Use component (not individual) as unit of analysis		
~	Be specific (x% of student scores for each component will be 4 or 5 on a five-point scale)		
✓	Avoid vague words such as "most" or "majority"		
✓	Avoid "all" or "100%" targets		
✓	Relate directly to outcome statement and assessment methodology		
✓	Identify component and overall target scores		
©Margie Hobbs, 2009			

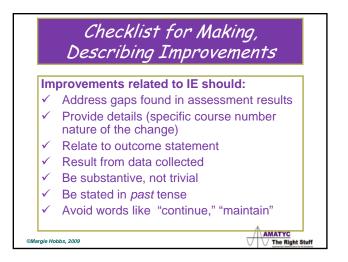
	V. Data Collection and Analysis
<u>conc</u> • Kee • Be c	e from <u>planning</u> the assessment to ducting it o detailed documentation andid in your analysis ort in detail sufficient to be convincing
Margie Hobbs, .	2009


Example of Data Collection Description (Exponentials Project)


The 24 exponentials projects were assessed by a three member faculty panel for each of the six components of the rubric and for overall performance. While the complete data table is <u>shown below</u> the summary of scores indicated the criterion was not met for the Methods (62.5%) and Conclusion (66.7%) components of the project.


©Margie Hobbs, 2009


AMATYC The Right Stuff


Example of Data Collection Description (Exponentials Project)				
Component	# scores 4 or 5	Total # scores	% of 4 or 5 scores	
Sources	68	72	94.4%	
Methods	45	72	62.5%	
Analysis	67	72	83.3%	
Conclusion	48	72	66.7%	
Organization	59	72	81.9%	
Grammar, etc.	62	72	86.1%	
Overall	54	72	75.8%	
©Margie Hobbs, 2009			AMATYC The Right Stuf	

	Sources
1	Allen, M. J. (2004). Assessing Academic Programs in Higher Education. Bolton, MA: Sage.
E	Banta, Trudy (2004). Hallmarks of Effective Outcomes Assessment. San Francisco, CA: Jossey-Bass.
E	Blair, Rikki, Ed. (2006). Beyond Crossroads – Implementing Mathematics Standards in the First Two Years of College. Memphis, TN: American Mathematical Association of Two-Year Colleges, 29-36.
E	Bloom, B. S. (1956). Taxonomy of Educational Objectives: The Classification of Educational Goals Handbook I: Cognitive Domain. New York, NY: Longmans, Green.
ł	Hobbs, M. (2005). "Assessment Issues in Graduate and Professional Programs." In Nichols, J. O. & Nichols, K. W. (2005). A Road Map for Improvement of Student Learning and Support Services Through Assessment. New York, NY: Agathon Press, 229-233.
ł	Krueger, R. A. & Casey, M.A. (2000). Focus Groups: A Practical Guide for Applied Research (3rd ed.). Thousand Oaks, CA: Sage.
1	Nichols, J. O. & Nichols, K. W. (2005). A Road Map for Improvement of Student Learning and Support Services Through Assessment. New York, NY: Agathon Press.
F	Palomba, C. A. & Banta, T. W. (1999) Assessment Essentials: Planning, Implementing and Improving Assessment in Higher Education. San Francisco: Jossey-Bass.
*	Aargie Hobbs, 2009